
GAMMA WALTZ 73
Pulses & Pulse Cycles Overview 5.1
5 WALTZ

5.1 Overview

The module PulWALTZ, which contains the class WALTZ, facilitates the use of WALTZ pulse cy-
cles in GAMMA nmr simulations. Class WALTZ contains parameters which define how WALTZ
cycles is to be implemented and provides functions for building WALTZ based waveforms, com-
posite pulses, and pulse trains.

5.2 Chapter Contents

5.2.1 WALTZ Section Listing

Overview page 5-73
Constructors and Assignment page 5-75
Pulse Waveform Functions page 5-75
Composite Pulse Functions page 5-75
Pulse Cycle Functions page 5-75
Description page 5-82
WALTZ Examples page 5-88

5.2.2 WALTZ Function Listing

Constructors and Assignment

WALTZ - Constructor for WALTZ parameters page 5-75
= - WALTZ parameters assignment page 5-75

Access Functions

WF - Set/Get Pulse Channel Inherited From Class Pulse page 5-76
WF_WALTZR - Set/Get RF-Field Strength Inherited From Class Pulse page 5-76
WF_WALTZK - Set/Get RF-Field Phase Inherited From Class Pulse page 5-76
WF_WALTZK - Set/Get RF-Field Offset Inherited From Class Pulse page 5-76

Pulse Waveform Functions

WF - WALTZ-R waveform page 5-76
WF_WALTZR - WALTZ-R waveform page 5-76
WF_WALTZK - WALTZ-K waveform page 5-76
WF_WALTZQ - WALTZ-Q waveform page 5-76

Composite Pulse Functions

PCmp - WALTZ-R composite pulse page 5-77
PCmpWALTZR- WALTZ-R composite pulse page 5-77
PCmpWALTZK- WALTZ-K composite pulse page 5-77
Scott Smith April 7, 1998

GAMMA WALTZ 74
Pulses & Pulse Cycles Chapter Contents 5.2
PCmpWALTZQ- WALTZ-Q composite pulse page 5-77

Pulse Cycle Functions

CycWALTZ4 - WALTZ-4 pulse cycle page 5-78
CycWALTZ8 - WALTZ-8 pulse cycle page 5-78
CycWALTZ16 - WALTZ-16 pulse cycle page 5-78

Output Functions

printBase - Print WALTZ basics Class Pulse Inherited page 5-78
print - Print WALTZ into an output stream page 5-81
<< - Print WALTZ to standard output page 5-81

5.2.3 WALTZ Figures & Tables Listing

WALTZ-R 3 Step Sequence: Composite 180 Pulse- page 5-82
WALTZ-K 5 Step Sequence- page 5-83
WALTZ-4 Pulse Cycle- page 5-84
WALTZ-8 Pulse Cycle- page 5-85
Reading WALTZ Parameters- page 5-88

5.2.4 WALTZ Examples

Reading WALTZ Parameters page 5-88
WALTZ Decoupling page 5-90
WALTZ-16 Decoupling vs. Field page 5-92
WALTZ Types vs. Decoupling page 5-94
WALTZ Decoupling with Relaxation page 5-96
WALTZ Decoupling Profile page 5-99
Scott Smith April 7, 1998

GAMMA WALTZ 75
Pulses & Pulse Cycles Constructors and Assignment 5.3

Z. If
5.3 Constructors and Assignment

5.3.1 WALTZ

Usage:

#include <PulWALTZ.h>
WALTZ()
WALTZ(double gB1, const String& ch, double ph=0, double off=0);
WALTZ(const WALTZ& WP)

Description:

The function WALTZ is used to create a WALTZ parameter container.

1. PulWALTZ() - Creates an “empty” NULL WALTZ parameter. Can be later filled by an assignment.

2. PulWALTZ(double gB1, const& ch, double ph, double off) - Sets up WALTZ for having an rf-field
strength of gB1 Hz on the channel specified by ch. WALTZ will be applied with an overall phase of ph
degrees and an offset of off Hz.

3. PulWALTZ(const PulWALTZ &PWF1) - Constructs an identical PulWALTZ to the inputPWF1.

Return Value:

WALTZ returns no parameters. It is used strictly to create a WALTZ parameter container.

Examples:

PulWALTZ PW; // Empty WALTZ parameters
PulWALTZ PW1(538.9, “13C”); // WALTZ @ γB1=538.9 on 13C channel
PulWALTZ PW3(PW1); // Another WALTZ identical to PW1

See Also: =

5.3.2 =

Usage:

#include <PulWALTZ.h>
void WALTZ operator = (PulWALTZ &PWF1)

Description:

The unary operator = (the assignment operator) allows for the setting of one WALTZ to another WALT
the WALTZ being assigned to exists it will be overwritten by the assigned WALTZ.

Return Value:

None, the function is void

Example:

PulWALTZ PW1(538.9, “13C”); // WALTZ @ γB1=538.9 on 13C channel
PulWALTZ PW2 = PW1; // Another WALTZ identical to PW1

See Also: PulWALTZ
Scott Smith April 7, 1998

GAMMA WALTZ 76
Pulses & Pulse Cycles Constructors and Assignment 5.3
5.4 Pulse Waveform Functions

5.4.1 WF

5.4.2 WF_WALTZR

5.4.3 WF_WALTZK

5.4.4 WF_WALTZQ

Usage:

#include <PulWALTZ.h>
PulWaveform WALTZ::WF()
PulWaveform WALTZ::WF_WaltzR()
PulWaveform WALTZ::WF_WaltzK()
PulWaveform WALTZ::WF_WaltzQ()

Description:

The functions WF_WALTZR, WF_WALTZK, and WF_WALTZQ, will return a composite pulses for
WALTZ-R, WALTZ-K, and WALTZ-Q respectively. The function WF is identical to WF_WALTZR.

Return Value:

The function returns an composite pulse.

Example:

WALTZ WP; // Declare WALTZ Parameters

WP.read(“filein.pset”) // Read in WALTZ Parameters

PulWaveform WR = WP.WFp(sys); // WALTZ-R waveform

WR = WP.PCmpWALTZR(sys); // Also WALTZ-R

PulWaveform WK = WP.WF_WALTZK(sys); // WALTZ-K waveform

PulWaveform WQ= WP.WF_WALTZQ(sys); // WALTZ-Q waveform

See Also: WALTZ-4, WALTZ-8, WALTZ-16
Scott Smith April 7, 1998

GAMMA WALTZ 77
Pulses & Pulse Cycles Constructors and Assignment 5.3
5.5 Composite Pulse Functions

5.5.1 PCmp

5.5.2 PCmpWALTZR

5.5.3 PCmpWALTZK

5.5.4 PCmpWALTZQ

Usage:

#include <PulWALTZ.h>
PulComposite WALTZ::PCmp(const spin_system&)
PulComposite WALTZ::PCmpWaltzR(const spin_system&)
PulComposite WALTZ::PCmpWaltzK(const spin_system&)
PulComposite WALTZ::PCmpWaltzQ(const spin_system&)

Description:

The functions PCmpWALTZR, PCmpWALTZK, and PCmpWALTZQ, will return a composite pulses for
WALTZ-R, WALTZ-K, and WALTZ-Q respectively. The function PCmp is identical to PCmpWALTZR.

Return Value:

The function returns an composite pulse.

Example:

spin_system sys; // Declare a spin system

sys.read(“filein.sys”); // Read in the spin system

WALTZ WP; // Declare WALTZ Parameters

WP.read(“filein.pset”) // Read in WALTZ Parameters

PulComposite WR = WP.PCmp(sys); // WALTZ-R composite pulse

WR = WP.PCmpWALTZR(sys); // Also WALTZ-R

PulComposite WK = WP.PCmpWALTZK(sys); // WALTZ-K composite pulse

PulComposite WQ= WP.PCmpWALTZQ(sys); // WALTZ-Q composite pulse

See Also: CycWALTZ-4, CycWALTZ-8, CycWALTZ-16
Scott Smith April 7, 1998

GAMMA WALTZ 78
Pulses & Pulse Cycles Constructors and Assignment 5.3
5.6 Pulse Cycle Functions

5.6.1 CycWALTZ4

5.6.2 CycWALTZ8

5.6.3 CycWALTZ16

Usage:

#include <PulWALTZ.h>
PulCycle WALTZ::CycWaltz4(const spin_system&)
PulCycle WALTZ::CycWaltz8(const spin_system&)
PulCycle WALTZ::CycWaltz16(const spin_system&)

Description:

The functions CycWALTZ4, CycWALTZ8, and CycWALTZ16, will return a pulse cycles for WALTZ-4,
WALTZ-8, and WALTZ-16 respectively.

Return Value:

The function returns an pulse cycle.

Example:

spin_system sys; // Declare a spin system

sys.read(“filein.sys”); // Read in the spin system

WALTZ WP; // Declare WALTZ Parameters

WP.read(“filein.pset”) // Read in WALTZ Parameters

PulCycle W4 = WP.CycWALTZ4(sys); // WALTZ-4 pulse cycle

PulCycle W8 = WP.CycWALTZ8(sys); // WALTZ-8 pulse cycle

PulCycle W16 = WP.CycWALTZ16(sys); // WALTZ-16 pulse cycle

See Also: PCmpWALTZ-K, PCmpWALTZ-R, PCmpWALTZ-Q
Scott Smith April 7, 1998

GAMMA WALTZ 79
Pulses & Pulse Cycles Constructors and Assignment 5.3

lues of
nal file.

n each
ram-
5.7 Input Functions

5.7.1 read

Usage:

#include <PulWALTZ.h>
void WALTZ::read(const String& filename, int idx = -1)
void WALTZ::read(ParameterAVLSet& pset, int idx = -1)

Description:

The function read will fill a WALTZ parameter with values in either a specified external ASCII file filename,
or from a specfied parameter set pset. If a non-negative index is also included as an argument then the param-
eters that define the returned WALTZ will be assumed indicated with a “(#)” on each where # is the va
idx. See the section on this chapter discussing how to specify WALTZ related parameters in an exter

Return Value:

void.

Example:

WALTZ WP; // Declare WALTZ Parameters

WP.read(“filein.pset”) // Read in WALTZ Parameters

ParameterAVLSet pset; // A GAMMA parameter set

pset.read(“another.pset”); // Read in a parameter set

WP.read(pset, 3); // Set WALTZ from 3rd in pset

See Also: ask_read

5.7.2 ask_read

Usage:

#include <PulWALTZ.h>
void WALTZ::ask_read(int argc, char* argv[], int argn)

Description:

The function read will interactively set thefill a WALTZ parameter with values in either a specified external
ASCII file filename, or from a specfied parameter set pset. If a non-negative index is also included as an ar-
gument then the parameters that define the returned WALTZ will be assumed indicated with a “(#)” o
where # is the values of idx. See the section on this chapter discussing how to specify WALTZ related pa
eters in an external file.

Return Value:

void.
Scott Smith April 7, 1998

GAMMA WALTZ 80
Pulses & Pulse Cycles Constructors and Assignment 5.3
Example:

WALTZ WP; // Declare WALTZ Parameters

WP.read(“filein.pset”) // Read in WALTZ Parameters

ParameterAVLSet pset; // A GAMMA parameter set

pset.read(“another.pset”); // Read in a parameter set

WP.read(pset, 3); // Set WALTZ from 3rd in pset

See Also: ask_read
Scott Smith April 7, 1998

GAMMA WALTZ 81
Pulses & Pulse Cycles Constructors and Assignment 5.3
5.8 Output Functions

5.8.1 print

Usage:

#include <PulWALTZ.h>
ostream& WALTZ::print(ostream& ostr)

Description:

The function print will output WALTZ parameters into a specified output stream ostr.

Return Value:

void.

Example:

WALTZ WP; // Declare WALTZ Parameters

WP.read(“filein.pset”) // Read in WALTZ Parameters

WP.print(cout); // Send WALTZ values to screen

See Also: <<

5.8.2 <<

Usage:

#include <PulWALTZ.h>
ostream& WALTZ::print(ostream& ostr)

Description:

The operator << will output WALTZ parameters to standard output.

Return Value:

void.

Example:

WALTZ WP; // Declare WALTZ Parameters

WP.read(“filein.pset”) // Read in WALTZ Parameters

cout << WP; // Send WALTZ values to screen

See Also: print
Scott Smith April 7, 1998

GAMMA WALTZ 82
Pulses & Pulse Cycles Constructors and Assignment 5.3
5.9 Description

5.9.1 Introduction

The functions in module PulWALTZ and Class WALTZ (contained in module PulWALTZ), is de-

signed to facilitate the use of WALTZ1 pulse trains in GAMMA NMR simulation programs. In
GAMMA, as in an NMR experiment, we should like to use WALTZ pulse trains as individual steps
in a general pulse sequence, including use in variable delays as part of multi-dimensional experi-
ments and/or use in pulse trains during acquisition steps.

5.9.2 WALTZ Parameters

A variable of type WALTZ contains only primitive parameters. In particular, it contains the four
values which define a pulse waveform: 1.) A # steps, 2.) An rf-field strength, 3.) An rf-phase 4.)
An rf-offset. These parameters can be used to completely determine how to set up composite pulses
such as that used in a WALTZ pulse train.

5.9.3 WALTZ Waveforms & Composite Pulses

The simplest WALTZ sequence is based on a 3 step composite 180 pulse. The pulses are applied
with the same rf-strength but vary in their applied length and phase. The details are shown in the
following figure, the composite pulse called WALTZ-R.

WALTZ-R 3 Step Sequence: Composite 180 Pulse

Figure 7-1 The basic WALTZ 3-step waveform. The blue steps indicate pulses that are applied with-
out any phase shift whereas the green step indicates a pulse with a 180 phase shift (as reflected in
the table). Shorthand notation is used for this sequence, 123, where each integer reflects multiples
of a 90 pulse and bar indicates the phase shift.

The WALTZ-R composite pulse is used to build WALTZ-4 pulse cycles. Additional composite
pulses are used in other WALTZ sequences. The next is WALTZ-K, a five step composite pulse as
shown in the next figure.

1.

Step Angle Phase

1 90.0 0.0

2 180.0 180.0

3 270.0 0.0

πx

2
----- π x–

3πx

2

1 2 3
Scott Smith April 7, 1998

GAMMA WALTZ 83
Pulses & Pulse Cycles Constructors and Assignment 5.3
WALTZ-K 5 Step Sequence

Figure 7-1 The basic WALTZ-K 5-step waveform. The blue steps indicate pulses that are applied
without any phase shift whereas the green step indicates a pulse with a 180 phase shift (as reflected
in the table). Shorthand notation is used for this sequence, 24231, where each integer reflects mul-
tiples of a 90 pulse and bar indicates the phase shift.

WALTZ-Q composites are used in making WALTZ-16 pulse cycles.

WALTZ-Q 9 Step Sequence

Figure 7-1 The basic WALTZ-Q 9-step waveform. The blue steps indicate pulses that are applied
without any phase shift whereas the green step indicates a pulse with a 180 phase shift (as reflected
in the table). Shorthand notation is used for this sequence, 342312423, where each integer reflects
multiples of a 90 pulse and bar indicates the phase shift.

3πx

2

3

π x–

12 24

π x–

2
-------2πx

π x–
Step Angle Phase

1 180.0 180.0

2 360.0 0.0

3 180.0 180.0

4 270.0 0.0

5 90.0 180.0

3π x–

2

3

πx

1 224

π x–

2
-------2πx π x–Step Angle Phase

1 270.0 180.0

2 360.0 0.0

3 180.0 180.0

4 270.0 0.0

5 90.0 180.0

6 180.0 0.0

7 360.0 180.0

8 180.0 0.0

9 270.0 180.0

3π x–

2

3

3πx

2

3 4

2π x– πx

2

Scott Smith April 7, 1998

GAMMA WALTZ 84
Pulses & Pulse Cycles Constructors and Assignment 5.3

TZ-R

he first
ffected
sidual
uences

nge.
n by
.

5.9.4 WALTZ Pulse Cycles

The simplest WALTZ based pulse cycle is WALTZ-4. This sequence cycles the basic composite
180 sequence, WALTZ-R, through a 4-step phase change. Using “R” to represent the WAL
base composite pulse, the base WALTZ-4 cycle sequence is given by RRRR where R implies a 180
phase shifted R. This relationship is shown in the figure below.

WALTZ-4 Pulse Cycle

Figure 7-2 The WALTZ-4 pulse cycle. Four WALTZ-R composite pulses are linked together with the
last two having their phase angle shifted by 180 degrees. Using R to designate the WALTZ-R and
a bar to indicate a 180 phase shift, WALTZ-4 can be described as repeating RRRR. The blue steps
above indicate pulses that are applied without any phase shift whereas the green step indicates a
pulse with a 180 phase shift (as reflected in the table).

There are two important properties of periodic decoupling sequences in an ideal situation. T
is that their performance is unaffected by phase inversion. The second is that they are una
by a cyclic permutation of some part of the sequence. However, in actuality there are small re
effects from choosing one possibility over the other. To compensate, one simply couples seq
together with varying phase and permutation.

The WALTZ-8 sequence cycles the 5 step composite WALTZ-K through a 4-step phase cha
Using “K” to represent the WALTZ-K composite pulse, the WALTZ-8 cycle sequence is give
KKK K where K implies a 180 phase shifted K. This relationship is shown in the figure below

Step Angle Phase Type Cycle

1 90.0 0.0 1
R2 180.0 180.0 2

3 270.0 0.0 3

4 90.0 0.0 1
R5 180.0 180.0 2

6 270.0 0.0 3

7 90.0 180.0 1
R8 180.0 0.0 2

9 270.0 180.0 3

10 90.0 180.0 1
R11 180.0 0.0 2

12 270.0 180.0 3

R R R R
Scott Smith April 7, 1998

GAMMA WALTZ 85
Pulses & Pulse Cycles Constructors and Assignment 5.3

n by
.

WALTZ-8 Pulse Cycle

Figure 7-1 The basic 5-step WALTZ-K waveform (on the left) is repeated 4 times to produces the
WALTZ-8 cycle. The blue steps indicate pulses that are applied without any phase shift whereas
the green step indicates a pulse with a 180 phase shift (as reflected in the table). Shorthand notation
is used for this sequence, KKKK. These four steps are repeated as long as WALTZ-8 is to be ap-
plied.

The WALTZ-16 sequence cycles the 9 step composite WALTZ-Q through a 4-step phase change.
Using “Q” to represent the WALTZ-Q composite pulse, the WALTZ-16 cycle sequence is give
QQQQ where Q implies a 180 phase shifted Q. This relationship is shown in the figure below

WALTZ-16 Pulse Cycle

Figure 7-1 The basic 9-step WALTZ-Q waveform (on the left) is repeated 4 times to produces the
WALTZ-16 cycle. The blue steps indicate pulses that are applied without any phase shift whereas
the green step indicates a pulse with a 180 phase shift (as reflected in the table). Shorthand notation
is used for this sequence, QQQQ. These four steps are repeated as long as WALTZ-16 is to be ap-
plied.

K K KK K

Q Q QQ Q
Scott Smith April 7, 1998

GAMMA WALTZ 86
Pulses & Pulse Cycles Constructors and Assignment 5.3

eans

e-de-
og-

e be-
aren-
 integer
wing

ollows.
ption-

exam-
TZ
eters

ple pro-
5.9.5 WALTZ Parameters

This section describes how an ASCII file may be constructed that is self readable by a WALTZ
variable. The file can be created with an editor of the users choosing and is read with the WALTZ
member function “read”. This provides for an extremely flexible and program independent m
of implementing WALTZ in NMR simulations.

The WALTZ (ASCII) input file is scanned for the specific parameters which specify the puls
lay parameters1: rf-strength, rf-phase, rf-offset, and the rf-channel. These parameters are rec
nized by certain keywords, as shown in the following table.

The order in which these parameters reside in the ASCII file is of no consequence.

The format of each parameter is quite simple and general for all GAMMA parameters. At th
ginning of a line the parameter keyword is written followed by an optional index number in p
thesis. This is then followed by one or more blanks and then an integer in parentheses. The
corresponds to the type of parameter value: 0 = integer, 1 = floating point, or 2 = string. Follo
the parenthesis should be at least one blank then a colon to indicate the parameter value f
The parameter value is then written followed by some blanks then a hyphen followed by an o
al comment.

There is one major restriction; keywords and string parameters cannot contain blanks. For
ple, v (0) is unknown, v(0) is. The string value 19 F is unknown, 19F is fine. If multiple WAL
pulse-delay steps need to be defined in the same file then simply put an index on all param
associated with a desired WALTZ and read the parameters using that index.

To read the file, see the documentation for function read (or ask-read) and look at the exam
grams in this chapter along with their input files.

Channel: WALTZiso

This parameter is optional. It will define which isotope channel the WALTZ rf-pulse will be applied on. If no
channel is specified GAMMA will assume that all spins in the system being treated are affected by the rf.
Thus if no channel is specified and WALTZ is utilized in an NMR simulation the system should be homo-
nuclear or the same WALTZ should be desired on all channels (same offset, phase, etc.)

1. Note that the ASCII file must contain viable parameters in GAMMA format. Indeed, the file is a GAMMA
parameter set and, as such, may contain any amount of additional information along with the valid WALTZ
parameters.

Table 1: Spin System Parameters

Parameter
Keyword

Assumed
Units

Examples
Parameter (Type) : Value - Statement

WALTZgamB1 Hz WALTZgamB1 (1) : 600.0 - Field Strength (Hz)

WALTZiso none WALTZiso (2) : 19F - WALTZ rf pulse channel

WALTZphi degrees WALTZphi (1) : 2.0 - WALTZ rf phase (deg)
Scott Smith April 7, 1998

GAMMA WALTZ 87
Pulses & Pulse Cycles Constructors and Assignment 5.3
Channel: WALTZphi

This parameter is optional. It will define the rf-phase of the WALTZ pulse. If no phase is specified it will be
taken to be zero.

Pulse Strength: WALTZgamB1

The parameters { WALTZang, WALTZgamB1, WALTZtp } work together. WALTZgamB1 se the pulse
strength if either WALTZang or WALTZgamB1 have also been specified. If only WALTZgamB1 is specified
amongst the three an error will result when reading these parameters to define WALTZ. If all three parameters
have been specified then WALTZgamB1 will be ignored, the strength set by { WALTZang, WALTZtp }
Scott Smith April 7, 1998

GAMMA WALTZ 88
Pulses & Pulse Cycles Constructors and Assignment 5.3

he
ode.
-
itional

s the
z on

read
of

t to
he
 does

 more
nged
ro-
g up
ams
5.10 WALTZ Examples

5.10.1 Reading WALTZ Parameters

To keep GAMMA programs using WALTZ sequences versatile, users will want to keep all WALTZ
specifications undetermined in the code. As the program runs, WALTZ settings are either specified
interactively and/or read in from an external ASCII (parameter) file. This section gives examples
of the latter case. The figure below shows an ASCII parameter file on the left and some GAMMA
program code on the right.

Reading WALTZ Parameters

Figure 7-2 Typical WALTZ parameters (left) and the GAMMA code which reads them. The param-
eters are contained in an ASCII file which the code reads to set up use of WALTZ.

The ASCII parameter file (on the left) is taken to be called “WALTZ.pset” and is read in by t
program code. Thus one can change the WALTZ parameters independent of the GAMMA c
The ASCII file format is typical of GAMMA parameter sets: The line ordering is of no conse
quence, the column spacing is not important, the end “- comments” can be left off, and add
lines of text or parameters may be included.

The GAMMA code is color coded with the parameters they read in the previous figure. Thu
second line (blue) will read the blue parameters and set up WALTZ with a strength of 983 H
the proton channel with an overall phase of 90 degrees. Similarly, the next line (green) will
the parameters colored green from the same ASCII file but sets up WALTZ with a strength
2.0459 kHz on the 19F channel (no phase, no offset).

The next line will interactively ask the user to supply a filename where the program can ge
WALTZ parameters. This filename (in this case “WALTZ.pset”) will be prompted for unless t
user specifies the file on the command line when the program is executed. The following line
the same but reads the WALTZ parameters indexed with a “3” from the file.

Using a combination of these commands, the user has complete flexibility in defining one or
WALTZ sequences in the same GAMMA program. The WALTZ parameters can be easily cha
by either changing their values in the ASCII file and/or changing the filename given to the p
gram. See the section of WALTZ parameters to see which parameters can be used in settin
WALTZ sequences. See the other programs in this chapter for full examples GAMMA progr
using them.

WALTZphi (1) : 90.0 - WALTZ overall rf-phase (deg)
WALTZiso (2) : 1H - WALTZ pulse channel
WALTZgamB1 (1) : 983.0 - WALTZ pulse strength (Hz)
WALTZiso(3) (2) : 19F - WALTZ pulse channel
WALTZgamB1(3)(2) : 2045.9 - WALTZ pulse strength (Hz)

WALTZ WP; // Declare WALTZ parameters
WP.read(“WALTZ.pset”); // Read WALTZ from file
WP.read(“WALTZ.pset”, 3); // Read WALTZ from file
WP.ask_read(argc, argv, 1); // Read WALTZ from file
WP.ask_read(argc, argv, 2, 3); // Read WALTZ from file
Scott Smith April 7, 1998

GAMMA WALTZ 89
Pulses & Pulse Cycles Constructors and Assignment 5.3
Scott Smith April 7, 1998

GAMMA WALTZ 90
Constructors and Assignment 5.3

April 7, 1998

// Spectral width
// Get desired spectral width

// Block size (must be base 2)
// Get block size

// Half-height linewidth
// Ask for apodization strength

// Set dwell time
// Set apodization rate
// Total FID length
// Set isotropic Hamiltonian
// Set detection operator to F-

 // Set density mx equilibrium
, 90.); // This is 1st 90 pulse

sigmap); // Perform acquisition under WALTZ-16
,R,0); // Here is an exponential

// Apodized FID
// Transformed FID -> spectrum

); // Output ASCII file
// Plot to screen using Gnuplot

imply sets the parameters up inter-
n system and the WALTZ parame-

e file who’s name the user must

am does the simulation. The FID is ac-
function “FID” and the pulse cycle has
last few lines apodize and transform
t on the screen.

ange effects and/or changing the 1st
e only minor modifications of a few

 file is listed on the following page. It
h the spin system and the WALTZ set-

pling input file (WALTZdec.sys)
Scott Smith

5.10.2 WALTZ Decoupling

In this section we shall produce a simple 1D NMR spectrum under
WALTZ-16 decoupling. A hard 90 pulse will be applied to a cho-
sen spin system on the acquisition channel. Then WALTZ-16 will
be applied on the decoupler channel during acquisition. The result-
ing FID will be apodized and Fourier transformed, the NMR spec-
trum put on screen using Gnuplot. Note that relaxation and
exchange effects will be ignored in this simulation. The code for
simple WALTZ-16 decoupling is shown below:

/* WALTZdec0.cc ***
**
** **
** GAMMA Decoupling Example Program **
** **
** This program uses the class WALTZ to perform a simple decoupling **
** simulation. A hard ideal pulse will be applied to an input spin **
** system. Subsequently, an acquisition will be performed with WALTZ-16 **
** decoupling applied on a specified channel. **
** **
** Author: S.A. Smith **
** Date: 3/9/98 **
** Update: 3/9/98 **
** Version: 3.5.4 **
** Copyright: S. Smith. Modify this program as you see fit for personal **
** use, but you must leave the program intact if redistrubuted **
** **
**
**/

#include <gamma.h>
#
main(int argc, char* argv[])
 {
 cout << “\n\t\t\t\tWALTZ Decoupling\n\n”;
 int qn = 1; // Query index
 spin_system sys; // Declare a spin system
 WALTZ WP; // WALTZ parameters

String filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
 cout << sys; // Have a look (for setting SW)
 WP.read(filename); // Read in WALTZ parameters
 PulCycle PCyc = WP.CycWALTZ16(sys); // Construct WALTZ-16 cycle

String IsoD = sys.symbol(0); // Detection/pulse channel
 if(sys.heteronuclear()) // If heteronuclear system
 query_parameter(argc, argv, qn++, // ask for detection channel

 “\n\tDetection Isotope? “, IsoD);
 double SW;
 query_parameter(argc, argv, qn++,
 “\n\tSpectral Width (Hz)? “, SW);
 int npts = 1024;
 query_parameter(argc, argv, qn++,
 “\n\tBlock Size? “, npts);
 double lwhh = 1.0;
 query_parameter(argc, argv, qn++,
 “\n\tApodization (Hz)? “, lwhh);
 double td = 1/SW;
 double R = (lwhh/2)*HZ2RAD;
 double tt = (npts-1)*td;
 gen_op H = Ho(sys);
 gen_op Det = Fm(sys, IsoD);
 gen_op sigma0 = sigma_eq(sys);
 gen_op sigmap = Iypuls(sys,sigma0,IsoD
 row_vector data = PCyc.FID(npts,td,Det,
 row_vector exp = Exponential(npts,tt,0.0
 row_vector fidap = product(data,exp);
 data = FFT(fidap);
 GP_1D(“spec.asc”, data, 0, -SW/2, SW/2
 GP_1Dplot(“spec.gnu”, “spec.asc”);
 }

The first half of this program s
actively. Note that both the spi
ters are contained in the sam
specify.

The second half of the progr
quired using the pulse cycle
been set to WALTZ-16. The
the FID then spit the plot ou

Addition of relaxation & exch
pulse to non-ideal will requir
lines.

The input parameter (ASCII)
contains parameters for bot
tings.

Example of a WALTZ decou

GAMMA WALTZ 91
Constructors and Assignment 5.3

April 7, 1998

trum Using WALTZ-16

d using the program WALTZdec0.cc
ec.sys. The decoupler was applied to
ld strength. Detection was on the pro-

collected using a spectral width of 500
 a 0.5 Hz line-broadening.

e or specifying a different input file,
ly altered. For example, by setting the
o one obtains the following spectrum.

, Zero Strength WALTZ-16

figure but with zero decoupler field.

0 100 200

0 100 200
Scott Smith

SysName (2) : WALTZ - Name of the Spin System
NSpins (0) : 4 - Number of Spins in the System
Iso(0) (2) : 1H - Spin Isotope Type
Iso(1) (2) : 1H - Spin Isotope Type
Iso(2) (2) : 1H - Spin Isotope Type
Iso(3) (2) : 13C - Spin Isotope Type
v(0) (1) : 105.0 - Chemical Shifts in Hz
v(1) (1) : -174.32 - Chemical Shifts in Hz
v(2) (1) : 15.0 - Chemical Shifts in Hz
v(3) (1) : 0.0 - Chemical Shifts in Hz
J(0,1) (1) : 10.0 - Coupling Constants in Hz
J(0,2) (1) : 7.9 - Coupling Constants in Hz
J(0,3) (1) : 22.0 - Coupling Constants in Hz
J(1,2) (1) : 2.8 - Coupling Constants in Hz
J(1,3) (1) : 32.0 - Coupling Constants in Hz
J(2,3) (1) : 18.3 - Coupling Constants in Hz
Omega (1) : 400 - Spect. Freq. in MHz (1H based)

WALTZphi (1) : 0 - WALTZ pulse phase (deg)
WALTZiso (2) : 13C - WALTZ pulse channel
WALTZgamB1 (1) : 1500.0 - WALTZ pulse strength (Hz)

When the program (WALTZdec0.cc) is compiled its execution will
produce a plot on screen if the Gnuplot program is available. As-
suming the executable is called a.out, the following command will
produces a spectrum:

a.out WALTZdec.sys 1H 500 1024 .5

The command “a.out” alone will prompt you for input values. Had
you input the above command (or parameters) the spectrum should
appear as shown in the following figure.

13C Decoupled Spec

Figure 7-3 The spectrum produce
with input parameter file WALTZd
the 13C channel with a 1.5 kHz fie
ton channel. 1K data points were
Hz. The data was processed with

By either editing the input fil
the spectrum can be radical
WALTZ pulse strength to zer

13C Coupled Spectrum

Figure 7-4 Same as previous

-200 -100

-200 -100

GAMMA WALTZ 92
Constructors and Assignment 5.3

April 7, 1998

// Ask for field strength file
);

// Number of field strengths
); // Get array of field strengths

// Detection/pulse channel
// If heteronuclear system

 // ask for detection channel

// Spectral width
// Get desired spectral width

// Block size (must be base 2)
// Get block size

// Half-height linewidth
// Ask for apodization strength

// Set dwell time
// Set apodization rate
// Total FID length
// Set isotropic Hamiltonian
// Set detection operator to F-

 // Set density mx equilibrium
, 90.); // This is 1st 90 pulse

// Set WALTZ field strength
// Set WALTZ-16 pulse cycle
// Perform acquisition
// Here is an exponential
// Apodized FID
// Transformed FID -> spectrum

, 1);

vious program are obvious. An ex-
cify a list of decoupler field
o the program. These fields are
mputed at each decoupler strength.
Scott Smith

5.10.3 WALTZ-16 Decoupling vs. Field

We can readily modify the previous program to loop over differing
rf-field strengths and determine how well WALTZ-16 does at de-
coupling. In this case we will just read in a series of gB1 values
from an external ASCII file and loop over them producing a 1D
spectrum at each value. We’ll spit out all the spectra in a single
stack plot.

/* WALTZdecstk1.cc ***
** **
** GAMMA Decoupling Test Program **
** **
** This program uses the class WALTZ to perform a simple decoupling **
** simulation. A hard ideal pulse will be applied to an input spin **
** system. Subsequently, an acquisition is taken with WALTZ-16 **
** decoupling applied on a specified channel. This pulse-acquisiton **
** process will be repeated over a series of specified decoupler **
** rf-field strengths. The decoupled spectra will be output on screen **
** if Gnuplot is available. The stack plot is also output in **
** FrameMaker MIF format. **
** **
** Author: S.A. Smith **
** Date: 3/11/98 **
** Update: 3/11/98 **
** Version: 3.5.4 **
** Copyright: S. Smith. You can modify this program as you see fit **
** for personal use, but you must leave the program intact **
** if you re-distribute it. **
** **
***/

#include <gamma.h>

main(int argc, char* argv[])
 {
 cout << “\n\t\t\t\tWALTZ Decoupling Vs. Decoupler Strength\n\n”;
 int qn = 1; // Query index
 spin_system sys; // Declare a spin system
 WALTZ WP; // WALTZ parameters
 String filename; // Input filename
 filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
 cout << sys; // Have a look (for setting SW)
 WP.read(filename); // Read in WALTZ parameters
 cout << WP;
 PulCycle PCyc;

 query_parameter(argc, argv, qn++,
 “\n\tFile of Field Strengths? “, filename
 int N;
 double* gB1s = GetDoubles(filename, N

 String IsoD = sys.symbol(0);
 if(sys.heteronuclear())
 query_parameter(argc, argv, qn++,
 “\n\tDetection Isotope? “, IsoD);
 double SW;
 query_parameter(argc, argv, qn++,
 “\n\tSpectral Width (Hz)? “, SW);
 int npts = 1024;
 query_parameter(argc, argv, qn++,
 “\n\tBlock Size? “, npts);
 double lwhh = 3.0;
 query_parameter(argc, argv, qn++,
 “\n\tApodization (Hz)? “, lwhh);
 double td = 1/SW;
 double R = (lwhh/2)*HZ2RAD;
 double tt = (npts-1)*td;
 gen_op H = Ho(sys);
 gen_op Det = Fm(sys, IsoD);
 gen_op sigma0 = sigma_eq(sys);
 gen_op sigmap = Iypuls(sys,sigma0,IsoD
 row_vector data, exp, fidap;
 matrix datamx(N,npts);
 for(int i=0; i<N; i++)
 {
 WP.strength(gB1s[i]);
 PCyc = WP.CycWALTZ16(sys);
 data = PCyc.FID(npts,td,Det,sigmap);
 exp = Exponential(npts,tt,0.0,R,0);
 fidap = product(data,exp);
 data = FFT(fidap);
 datamx.put_block(i,0,data);
 }
 double Nm1 = double(N-1);
 String AF(“stk.asc”);
 String GF(“stk.gnu”);
 GP_stack(AF, datamx, 0,1,N,0.0,Nm1);
 GP_stackplot(GF, AF);
 FM_stack(“stk.mif”, datamx, 1.5, 1.5
 }

The modifications from the pre
ternal ASCII file is used to spe
strengths and these are read int
looped over, a new spectrum co

GAMMA WALTZ 93
Constructors and Assignment 5.3

April 7, 1998

contains a list of rf-field strengths
The file has a single field strength

ut file (WALTZdecBs)

 files (such as WALTZdec.sys) this
t have anything other than a single
per line. No additional comments
Scott Smith

The spectra are put into a matrix which is given to the Gnuplot rou-
tines for display as a stack plot on screen. In addition, the stack plot
is output in FrameMaker MIF format for incorporation into docu-
ments in an editable form. The latter is shown in the following fig-
ure.

13C WALTZ-16 Decoupling Versus RF-Field Strength

Figure 7-5 Proton spectra produced using the program WALTZdec1.cc
with input parameter file WALTZdec.sys and decoupler strength file
WALTZdecBs. The decoupler was applied to the 13C channel with field
strengths shown. Detection was on the proton channel. 1K data points
were collected using a spectral width of 500 Hz. The data was processed
with a 1.5 Hz line-broadening. Note: the baseline “noise” exists because
of my use of an asynchronous acquisition. By setting a spectral width that
is commensurate with the WALTZ-16 cycle length that will disappear
(see function FIDsync, its used in the next example).

When the program (WALTZdecstk1.cc) is compiled its execution
will produce a stack plot on screen if the Gnuplot program is avail-
able. Assuming the executable is called a.out, the following com-
mand will produce the plot shown in the previous figure:

a.out WALTZdec.sys WALTZdecBs 1H 500 1024 1.5

The ASCII file WALTZdecBs
(in Hz) that the program used.
per line and is shown next.

WALTZ decoupling rf-field inp

0
200
400
600
800

Unlike GAMMA parameter set
file is simple ASCII and canno
floating point or integer value
may be included.

GAMMA WALTZ 94
Pulses & Pulse Cycles Constructors and Assignment 5.3

ould be
,

 the
 the se-
 pulse
5.10.4 WALTZ Types vs. Decoupling

For something different, lets compare how well the different WALTZ sequences perform. The base
WALTZ composite 180 pulse, WALTZ-R, is cycled to produce WALTZ-4. The base composite
pulse is altered to produce WALTZ-8 and WALTZ-16, which are based on WALTZ-K and WALTZ-
Q composite pulses respectively. The variations are improvements which are meant to suppress ar-
tifacts that can result from pulse mis-calibration.

In this example we will generate WALTZ decoupled spectra using all six of these sequences. Since
we are using “perfect” rectangular pulses and neglecting relaxation, the resulting spectra sh
(nearly) identical. Note the difference in the use of Composite Pulses (WALTZ-R, WALTZ-K
WALTZ-Q) relative to Pulse Cycles (WALTZ-4, WALTZ-8, and WALTZ-16). Their associated
functionality in GAMMA is very similar although the cycles are automatically accounting for
phase changes in the composite pulses. Also, note that more obvious differences between
quences should arise when relaxation effects are include and/or we intentionally mis-set the
lengths.

13C WALTZ Decoupling Versus WALTZ Type

Figure 7-6 Proton spectra produced using the program WALTZtypes1.cc with input parameter file WALTZ-
dec.sys. The decoupler was applied to the 13C channel and detection was on the proton channel. 1K data
points were collected using a spectral width of 500 Hz. The data was processed with a 1.0 Hz line-broad-
ening. Note: the baseline “noise” exists because of my use of an asynchronous acquisition. By setting a
spectral width that is commensurate with the various WALTZ sequence lengths that will disappear (see func-
tion FIDsync).

WALTZ-R

WALTZ-K

WALTZ-Q

WALTZ-4

WALTZ-8

WALTZ-16
Scott Smith April 7, 1998

GAMMA WALTZ 95
Constructors and Assignment 5.3

April 7, 1998

// Total FID length
// Set isotropic Hamiltonian
// Set detection operator to F-
// Set density mx equilibrium

, 90.); // This is 1st 90 pulse

// Number of WALTZ cycle types
// Number of WALTZ composite types

// Set WALTZ-R composite pulse
// Set WALTZ-K composite pulse
// Set WALTZ-Q composite pulse

// Set WALTZ-4 pulse cycle
// Set WALTZ-8 pulse cycle
// Set WALTZ-16 pulse cycle

; // Perform acquisition
// Here is an exponential
// Apodized FID
// Transformed FID -> spectrum

// Perform acquisition
// Here is an exponential
// Apodized FID
// Transformed FID -> spectrum

);
Scott Smith

The program below produced the previous stack plot.

/* WALTZtypes1.cc **
** **
** GAMMA Decoupling Test Program **
** **
** This program uses the class WALTZ to perform a simple decoupling **
** simulation. A hard ideal pulse will be applied to an input spin **
** system. Subsequently, an acquisition is taken with one of the **
** WALTZ decoupling sequences applied on a specified channel. This **
** pulse-acquisition process will be repeated over a series of WALTZ **
** sequences (WALTZ-{R,K,Q,4,8,16}). The decoupled spectra will be **
** output on screen if Gnuplot is available. The stack plot is also **
** output in FrameMaker MIF format. **
** **
** Author: S.A. Smith **
** Date: 3/11/98 **
** Version: 3.5.4 **
** **
***/

#include <gamma.h>

main(int argc, char* argv[])
 {
 cout << “\n\t\t\t\tWALTZ Decoupling Vs. WALTZ Type\n\n”;
 int qn = 1; // Query index
 spin_system sys; // Declare a spin system
 WALTZ WP; // WALTZ parameters
 String filename; // Input filename
 filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
 cout << sys; // Have a look (for setting SW)
 WP.read(filename); // Read in WALTZ parameters
 cout << WP;

 String IsoD = sys.symbol(0); // Detection/pulse channel
 if(sys.heteronuclear()) // If heteronuclear system
 query_parameter(argc, argv, qn++, // ask for detection channel
 “\n\tDetection Isotope? “, IsoD);
 double SW; // Spectral width
 query_parameter(argc, argv, qn++, // Get desired spectral width
 “\n\tSpectral Width (Hz)? “, SW);
 int npts = 1024; // Block size (must be base 2)
 query_parameter(argc, argv, qn++, // Get block size
 “\n\tBlock Size? “, npts);
 double lwhh = 3.0; // Half-height linewidth
 query_parameter(argc, argv, qn++, // Ask for apodization strength
 “\n\tApodization (Hz)? “, lwhh);
 double td = 1/SW; // Set dwell time
 double R = (lwhh/2)*HZ2RAD; // Set apodization rate

 double tt = (npts-1)*td;
 gen_op H = Ho(sys);
 gen_op Det = Fm(sys, IsoD);
 gen_op sigma0 = sigma_eq(sys);
 gen_op sigmap = Iypuls(sys,sigma0,IsoD
 row_vector data, exp, fidap;
 int N = 3;
 int M = 3;
 matrix datamx(N+M,npts);
 PulComposite Comps[M];
 Comps[0] = WP.PCmpWALTZR(sys);
 Comps[1] = WP.PCmpWALTZK(sys);
 Comps[2] = WP.PCmpWALTZQ(sys);
 PulCycle Cycles[N];
 Cycles[0] = WP.CycWALTZ4(sys);
 Cycles[1] = WP.CycWALTZ8(sys);
 Cycles[2] = WP.CycWALTZ16(sys);
 PulComposite PComp;
 PulCycle PCyc;
 int i;
 for(i=0; i<M; i++)
 {
 PComp = Comps[i];
 data = PComp.FID(npts,td,Det,sigmap)
 exp = Exponential(npts,tt,0.0,R,0);
 fidap = product(data,exp);
 data = FFT(fidap);
 datamx.put_block(i,0,data);
 }
 for(int j=0; i<N+M; i++, j++)
 {

PCyc = Cycles[j];
 data = PCyc.FID(npts,td,Det,sigmap);
 exp = Exponential(npts,tt,0.0,R,0);
 fidap = product(data,exp);
 data = FFT(fidap);
 datamx.put_block(i,0,data);
 }
 double Nm1 = double(N+M-1);
 String AF(“stk.asc”);
 String GF(“stk.gnu”);
 GP_stack(AF, datamx, 0,1,N+M,0.0,Nm1
 GP_stackplot(GF, AF);
 FM_stack(“stk.mif”, datamx, 1.5, 1.5, 1);
 }

GAMMA WALTZ 96
Pulses & Pulse Cycles Constructors and Assignment 5.3

pin
oving
rs for

ical
t de-

at

es.In
p
re
5.10.5 WALTZ Decoupling with Relaxation

How can we include the effects of relaxation (and/or exchange) when we decouple? Since we al-
ready have a couple of programs that simulate decoupled spectra under WALTZ without relaxation,
we need only make the proper modifications to them and their input files in order to obtain the sim-
ulation(s) we want.

Lets review a few of basic changes we’ll need. First, rather than working with an isotropic s
system (spin_system) in our program, we need to work with a oriented spin system that is m
isotropically. That is, a spin system that keeps track of dipolar, CSA, and quadrupolar tenso
all spins or spin-pairs. Thus we need to replace spin_system with sys_dynamic. Second, when the
system is read in from an external ASCII file it will look for tensor quantities as well as dynam
values (correlation times). Next we will have to create a relaxation matrix and Liouvillian tha
fines how the system evolves. And lastly, we’ll have to use an FID function that includes th
evolves under the defined Liouvillian so that relaxation (and exchange) are accounted for.

This seems like it is complicated, but in fact amounts only to about few lines of code chang
this example, I’ll modify the previous program to include relaxation.... but I’ll remove the loo
over the different WALTZ types and just allow the user to choose one. A couple of results a
shown in the next figure and we’ll see the code after that.

13C WALTZ Decoupling Under Relaxation

Figure 7-7 Proton spectra produced using the program WALTZdec2.cc with input parameter file
WALTZdec3.dsys. The decoupler was applied to the 13C channel and detection was on the proton channel.
1K data points were collected using a spectral width of 500 Hz. The data was processed without line-broad-
ening. The input file is given on a subsequent page, WALTZdec3.dsys. Successive plots were made with
the same input file except for the correlation times (kept spherical) altered as reflected on the plot.

-200 -100 0 100 200

τ = 1.0 ns

τ = 0.1 ns

τ = 0.5 ns
Scott Smith April 7, 1998

GAMMA WALTZ 97
Constructors and Assignment 5.3

April 7, 1998

s); break;
s); break;
s); break;
reak;
reak;
 break;

// Detection/pulse channel
// If heteronuclear system

 // ask for detection channel

// Spectral width
// Get desired spectral width

// Block size (must be base 2)
// Get block size

// Half-height linewidth
// Ask for apodization strength

// Set dwell time
// Set apodization rate
// Total FID length
// Set isotropic Hamiltonian
// Set detection operator to F-

 // Set density mx equilibrium
, 90.); // This is 1st 90 pulse

 // Get relaxation superoperator

// Put relaxation into pulse
); // Perform acquisition

// Put relaxation into pulse
; // Perform acquisition

,0); // Here is an exponential
// Apodized FID
// Transformed FID -> spectrum

); // Output ASCII file
// Plot to screen using Gnuplot

/2); // Plot in FrameMaker MIF
Scott Smith

/* WALTZdec2.cc **
** **
** GAMMA Decoupling Test Program **
** **
** This program uses the class WALTZ to perform a simple decoupling **
** simulation. A hard ideal pulse will be applied to an input spin **
** system. Subsequently, an acquisition is performed with WALTZ **
** decoupling applied on a specified channel. The decoupled spectrum **
** will be output on screen if Gnuplot is available. The spectrum **
** is also output in FrameMaker.MIF format. **
** **
** **
** Note: This program is identical to WALTZdec1.cc except that it **
** includes the effects of relaxation. **
** **
** Author: S.A. Smith **
** Date: 3/30/98 **
** Update: 3/30/98 **
** Version: 3.5.4 **
** Copyright: S. Smith. You can modify this program as you see fit **
** for personal use, but you must leave the program intact **
** if you re-distribute it. **
** **
***/

#include <gamma.h>
main(int argc, char* argv[])
 {
 cout << “\n\t\t\t\tWALTZ Decoupling With Relaxation\n\n”;
 int qn = 1; // Query index
 sys_dynamic sys; // Declare a spin system
 WALTZ WP; // WALTZ parameters
 String filename; // Input filename
 filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
 cout << sys; // Have a look (for setting SW)
 WBRExch WBR; // Relaxation parameters
 WBR.read(filename, sys); // Read in relaxation parameters
 cout << WBR; // Have a look at relaxation settings
 WP.read(filename); // Read in WALTZ parameters

 cout << “\n\tWALTZ Decoupling Schemes:\n”; // Ask fo WALTZ type
 cout << “\n\t\tRepeated WALTZ-R (1)”;
 cout << “\n\t\tRepeated WALTZ-K (2)”;
 cout << “\n\t\tRepeated WALTZ-Q (3)”;
 cout << “\n\t\tWALTZ-4 Cycle (4)”;
 cout << “\n\t\tWALTZ-8 Cycle (5)”;
 cout << “\n\t\tWALTZ-16 Cycle (6)”;
 int wt;
 query_parameter(argc, argv, qn++, // Get number of steps
 “\n\n\tWALTZ Type? “, wt);
 if(wt<1 || wt>6) wt=1; // Insure [1,6]

 PulComposite PCmp;
 PulCycle PCyc;
 switch(wt)
 {
 case 1: PCmp = WP.PCmpWALTZR(sy
 case 2: PCmp = WP.PCmpWALTZK(sy
 case 3: PCmp = WP.PCmpWALTZQ(sy
 case 4: PCyc = WP.CycWALTZ4(sys); b
 case 5: PCyc = WP.CycWALTZ8(sys); b
 case 6: PCyc = WP.CycWALTZ16(sys);
 }
 String IsoD = sys.symbol(0);
 if(sys.heteronuclear())
 query_parameter(argc, argv, qn++,
 “\n\tDetection Isotope? “, IsoD);
 double SW;
 query_parameter(argc, argv, qn++,
 “\n\tSpectral Width (Hz)? “, SW);
 int npts = 1024;
 query_parameter(argc, argv, qn++,
 “\n\tBlock Size? “, npts);
 double lwhh = 3.0;
 query_parameter(argc, argv, qn++,
 “\n\tApodization (Hz)? “, lwhh);
 double td = 1/SW;
 double R = (lwhh/2)*HZ2RAD;
 double tt = (npts-1)*td;
 gen_op H = Ho(sys);
 gen_op Det = Fm(sys, IsoD);
 gen_op sigma0 = sigma_eq(sys);
 gen_op sigmap = Iypuls(sys,sigma0,IsoD
 super_op L = WBR.REX(sys,H);
 row_vector data;
 if(wt<=3)
 {
 PCmp.setRelax(sys,L);
 data=PCmp.FIDR(npts,td,Det,sigmap,1
 }
 else
 {
 PCyc.setRelax(sys,L);
 data=PCyc.FIDR(npts,td,Det,sigmap,1)
 }
 row_vector exp=Exponential(npts,tt,0.0,R
 row_vector fidap = product(data,exp);
 data = FFT(fidap);
 GP_1D(“spec.asc”, data, 0, -SW/2, SW/2
 GP_1Dplot(“spec.gnu”, “spec.asc”);
 FM_1D(“spec.mif”, data,14,14,-SW/2, SW
 }

GAMMA WALTZ 98
Constructors and Assignment 5.3

April 7, 1998

 - Dip-Quad Relaxation Flag
 - Quad DFS Flag
 - Dip-CSA Relaxation Flag
 - Dip-CSA DFS Flag
 - Quad-CSA Relaxation Flag
 - Quad-CSA DFS Flag

as shown in the previous figure) the in-
ltered. The three lines used were

, 0.1, 0.1) - Correlation Times (ns)
, 0.5, 0.5) - Correlation Times (ns)
, 1.0, 1.0) - Correlation Times (ns)

 was used. Each spectrum size was set
roadening was used in the processing.
o 500 Hz and detection was on the pro-
Scott Smith

The previous simulation was given the input file
“WALTZdec3.dsys” which is shown below. This file contains a
spin system, WALTZ parameters, and relaxation parameters.

SysName (2) : WALTZ - Name of the Spin System
NSpins (0) : 3 - Number of Spins in the System
Iso(0) (2) : 1H - Spin Isotope Type
Iso(1) (2) : 1H - Spin Isotope Type
Iso(2) (2) : 13C - Spin Isotope Type
v(0) (1) : 105.0 - Chemical Shifts in Hz
v(1) (1) : 20.0 - Chemical Shifts in Hz
v(2) (1) : 0.0 - Chemical Shifts in Hz
J(0,1) (1) : 12.0 - Coupling Constants in Hz
J(0,2) (1) : 22.0 - Coupling Constants in Hz
J(1,2) 1) : 28.0 - Coupling Constants in Hz
Coord(0) (3) : (0.0, 0.0, 0.0) - Coordinate Point (A)
Coord(1) (3) : (0.0, 0.0, 1.1) - Coordinate Point (A)
Coord(2) (3) : (0.0, 0.0, -1.1) - Coordinate Point (A)
Taus (3) : (0.5, 0.5, 0.5) - Correlation Times (ns)
Omega (1) : 400 - Spec. Freq. in MHz (1H based)

WALTZphi (1) : 0 - WALTZ pulse phase (deg)
WALTZiso (2) : 13C - WALTZ pulse channel
WALTZgamB1 (1) : 3000.0 - WALTZ pulse strength (Hz)

Rlevel (0) : 4 - Relaxation Computation Level
Rtype (0) : 0 - Relaxation Computation Type
RDD (0) : 1 - Dipolar Relaxation Flag
RDDdfs (0) : 0 - Dipolar DFS Flag
RCC (0) : 0 - CSA Relaxation Flag
RCCdfs (0) : 0 - CSA DFS Flag
RQQ (0) : 0 - Quad Relaxation Flag
RQQdfs (0) : 0 - Quad DFS Flag

RDQ (0) : 0
RDQdfs (0) : 0
RDC (0) : 0
RDCdfs (0) : 0
RQC (0) : 0
RQCdfs (0) : 0

For successive simulations (
put correlation times were a

Taus (3) : (0.1
Taus (3) : (0.5
Taus (3) : (1.0

In all three cases, WALTZ-16
to 1024 points and no line-b
The spectral width was set t
ton channel.

GAMMA WALTZ 99
Pulses & Pulse Cycles Constructors and Assignment 5.3

d
5.10.6 WALTZ Decoupling Profile

In this section we shall attempt to produce a WALTZ decoupling profile. A hard 90 pulse will be
applied to a simple heteronuclear spin system on the acquisition channel. Then WALTZ decoupling
will be applied on the decoupler channel during acquisition. The user will specify which WALTZ
sequence to use. The resulting FID will be apodized and Fourier transformed. This pulse-delay pro-
cess will be repeated for differing offsets on the decoupler channel. Each spectrum will be plotted
with its center at the offset frequency to produce the profile.

The really no significant differences between this and our previous calculations. To determine a
profile one typically uses the simplest spin system (here a two spin heteronuclear system). The 1D
spectrum is recalculated after either moving the decoupler rf offset or, equivalently, moving all de-
coupler isotope channel chemical shifts. The spectra are all just put into a single vector, offset so
their respective centers are set to be referenced to the decoupler offset value.

Here are some of the results from the GAMMA program given on the following page.

WALTZ Decoupling Profiles

Figure 7-8 WALTZ decoupling profiles produced from the program WALTZprof2.cc. Decoupling was

performed on the carbon channel in a 13C-1H two spin system. The decoupling rf-field strength was
set to 5 kHz and the scalar coupling to 221 Hz. A linebroadening of 1.5 Hz was used in processing
the spectra. The block size was 1K and the offset increment set to 200 Hz.

-4000 -2000 0 2000 4000

SysName (2) : WALTZp - Name of the Spin System
NSpins (0) : 2 - Number of Spins
Iso(0) (2) : 1H - Spin Isotope Type
Iso(1) (2) : 13C - Spin Isotope Type
v(0) (1) : 0.0 - Chemical Shifts in Hz
v(1) (1) : 0.0 - Chemical Shifts in Hz
J(0,1) (1) : 221.0 - Coupling Constants in Hz
Omega (1) : 720 - Spec. Freq. in MHz

WALTZphi (1) : 0 - WALTZ phase (deg)
WALTZiso (2) : 13C - WALTZ channel
WALTZgamB1 (1) : 5000.0 - WALTZ strength (Hz)

The above lines constitute the input file
used, WALTZprof.sys The program was
run using the command

a.out WALTZprof.sys 6 50 1024 1.5 25 200

where a.out is the program executable and
“6” was varied from 1-6 on successive
runs. The output was displayed on the
screen and placed into FrameMaker MIF
format, the latter of which has been place
into this document as seen on the left.

WALTZ-R

WALTZ-K

WALTZ-Q

WALTZ-4

WALTZ-8

WALTZ-16
Scott Smith April 7, 1998

GAMMA WALTZ 100
Constructors and Assignment 5.3

April 7, 1998

// Insure [1,6]

s); break;
s); break;
s); break;
reak;
reak;
 break;

nd Profile Parameters

// Detection/pulse channel
// Decoupler channel
// Try and set channel to
// not be the decoupling one
// Spectral width
// Get desired spectral width

// Block size (must be base 2)
// Get block size

// Half-height linewidth
// Ask for apodization strength

// # Of Offsets (on each side)
 // Get # offsets
ts? “, NO);

 // Get # offsets
ffset);

sistent Through All Offsets

// Set apodization rate
// Set detection operator to F-

 // Set density mx equilibrium
, 90.); // This is 90 detection pulse

// Block for acquisiton

Global Over Full Profile

lex0); // Block for profile
// Total offset at end
// Block for apodized FID
// Synchronize dwell times

W;
// Set dwell time
// Total FID length
Scott Smith

/* WALTZprof2.cc **
** **
** GAMMA Decoupling Test Program **
** **
** This program uses the class WALTZ to perform a simple decoupling **
** simulation. A hard ideal pulse will be applied to a simple two **
** spin heteronuclear system. Subsequently, an acquisition will be **
** performed with WALTZ decoupling applied on one the channel which **
** is not being detected. This process will be repeated over a range **
** of decoupler offsets. The result is a WALTZ decoupler profile. **
** The profile will be plotted on screen if Gnuplot is available on **
** the system. The profile will also be output in FrameMaker MIF. **
** **
** Author: S.A. Smith **
** Date: 4/7/98 **
** Update: 4/7/98 **
** Version: 3.5.4 **
** **
***/

#include <gamma.h>

main(int argc, char* argv[])
 {
 cout << “\n\t\t\t\tWALTZ Decoupling Profile\n\n”;

// Read In Spin System & WALTZ Parameters

 int qn = 1; // Query index
 spin_system sys; // Declare a spin system
 WALTZ WP; // WALTZ parameters
 String filename; // Input filename
 filename = sys.ask_read(argc,argv,qn++); // Ask for/read in the system
 cout << sys; // Have a look (for setting SW)
 if(sys.spins()!=2 || sys.homonuclear())
 cout << “\n\tWarning! This program has been”
 << “ set up for a two spin heteronuclear”
 << “ system. Results on other systems”
 << “ can be unpredictable........”;
 WP.read(filename); // Read in WALTZ parameters

// Set WALTZ Decoupling Scheme

cout << “\n\tWALTZ Decoupling Schemes:\n”; // Ask fo WALTZ type
 cout << “\n\t\tRepeated WALTZ-R (1)”;
 cout << “\n\t\tRepeated WALTZ-K (2)”;
 cout << “\n\t\tRepeated WALTZ-Q (3)”;
 cout << “\n\t\tWALTZ-4 Cycle (4)”;
 cout << “\n\t\tWALTZ-8 Cycle (5)”;
 cout << “\n\t\tWALTZ-16 Cycle (6)”;
 int wt;
 query_parameter(argc, argv, qn++, // Get number of steps
 “\n\n\tWALTZ Type? “, wt);

 if(wt<1 || wt>6) wt=1;

 PulComposite PCmp;
 PulCycle PCyc;
 switch(wt)
 {
 case 1: PCmp = WP.PCmpWALTZR(sy
 case 2: PCmp = WP.PCmpWALTZK(sy
 case 3: PCmp = WP.PCmpWALTZQ(sy
 case 4: PCyc = WP.CycWALTZ4(sys); b
 case 5: PCyc = WP.CycWALTZ8(sys); b
 case 6: PCyc = WP.CycWALTZ16(sys);
 }

// Set Acquistion a

String IsoD = sys.symbol(0);
 String IsoG = WP.channel();
 if(IsoD == IsoG)
 IsoD = sys.symbol(1);
 double SW;
 query_parameter(argc, argv, qn++,
 “\n\tSpectral Width (Hz)? “, SW);
 int npts = 1024;
 query_parameter(argc, argv, qn++,
 “\n\tBlock Size? “, npts);
 double lwhh = 3.0;
 query_parameter(argc, argv, qn++,
 “\n\tApodization (Hz)? “, lwhh);
 int NO = 30;
 query_parameter(argc, argv, qn++,
 “\n\tNumber of Positive Decoupler Offse
 double offset;
 query_parameter(argc, argv, qn++,
 “\n\tDecoupler Offset Per Step (Hz)? “, o

// Set Up Variables Con

double R = (lwhh/2)*HZ2RAD;
 gen_op Det = Fm(sys, IsoD);
 gen_op sigma0 = sigma_eq(sys);
 gen_op sigmap = Iypuls(sys,sigma0,IsoD
 row_vector data(npts);

/ Set Up Variables

row_vector profile((2*NO+1)*npts, comp
 double totaloff = double(NO)*offset;
 row_vector fidap;
 if(wt <=3) SW = PCmp.FIDsync(SW);
 else SW = PCyc.FIDsync(SW);
 cout << “\n\tSynch Spectral Width “ << S
 double td = 1/SW;
 double tt = (npts-1)*td;

GAMMA WALTZ 101
Constructors and Assignment 5.3

April 7, 1998

lations. In principle composite pulses
 only 1 phase. Similarly, pulse cycles
e number of steps would be multiplied

the waveform is put through during the

icient in calculating decoupling effects!
 reuses Hamiltonians and propagators
ly add in the ability to generate a
Z-16 composite pulse since it will sim-
t the expense of computation efficien-
Scott Smith

 row_vector exp=Exponential(npts,tt,0.0,R,0); // Block for apodization

// Loop Over Offsets, Calculate Profile

 int K =0; // Point index in profile
 sys.offsetShifts(-NO*offset, IsoG); // Set 1st profile offset
 cout << “\n\tProfile Offset “;
 for(int ov=-NO; ov<=NO; ov++) // Loop over offsets
 {
 printIndx(cout, ov); // Output offset index
 switch(wt)
 {
 case 1: PCmp = WP.PCmpWALTZR(sys); break;
 case 2: PCmp = WP.PCmpWALTZK(sys); break;
 case 3: PCmp = WP.PCmpWALTZQ(sys); break;
 case 4: PCyc = WP.CycWALTZ4(sys); break;
 case 5: PCyc = WP.CycWALTZ8(sys); break;
 case 6: PCyc = WP.CycWALTZ16(sys); break;
 }
 if(wt<=3) data=PCmp.FIDR(npts,td,Det,sigmap);// Perform acquisition
 else data=PCyc.FID(npts,td,Det,sigmap);
 fidap = product(data,exp); // Apodized FID this offset
 data = FFT(fidap); // Spectrum this offset
 profile.put_block(0, K, data); // Put spectrum in profile
 sys.offsetShifts(offset, IsoG); // Move system to next offset
 K += npts; // Adjust profile point index
 }

 double F = totaloff + SW/2; // Final plot frequency
 GP_1D(“prof.asc”, profile, 0, -F, F); // Output profile ASCII data
 GP_1Dplot(“prof.gnu”, “prof.asc”); // Plot to screen using Gnuplot
 FM_1D(“prof.mif”, profile ,14,14,-F, F); // Plot in FrameMaker MIF
 }

It is evident that use of the WALTZ pulse cycles is superior to use
of repeated composite pulses without the compensating phase cy-
cle (i.e. WALTZ-{4,8,16} works better than WALTZ-{R,K,Q}). It
also is clear that, at least for this two spin system without relaxation
effects, the WALTZ-16 is the best of these WALTZ sequences.

Unfortunately the source code for this example was well over a page
long, mostly due to allowing the user to choose between decoupling
schemes. Part of the length is also due to GAMMA use of Composite
Pulses (WALTZ-{R,K,Q}) versus Pulse Cycles (WALTZ-{4,8,16}).

This difference is set in GAMMA so that the two types are internally han-

dled in an efficient manner in simu
could simply be pulse cycles with
could be composite pulse where th
by the number of phase changes
cycle.

Both of these will likely be less eff
This is because GAMMA internally
when possible. However, I will like
WALTZ-K pulse cycle and a WALT
mplify some GAMMA programs (a
cy).

	5 WALTZ
	5.1 Overview
	5.2 Chapter Contents
	5.2.1 WALTZ Section Listing
	5.2.2 WALTZ Function Listing

	Constructors and Assignment
	Access Functions
	Pulse Waveform Functions
	Composite Pulse Functions
	Pulse Cycle Functions
	Output Functions
	5.2.3 WALTZ Figures & Tables Listing
	5.2.4 WALTZ Examples
	5.3 Constructors and Assignment
	5.3.1 WALTZ
	Usage:
	Description:
	1. PulWALTZ() - Creates an “empty” NULL WALTZ parameter. Can be later filled by an assignment.
	2. PulWALTZ(double gB1, const& ch, double ph, double off) - Sets up WALTZ for having an rf-field ...
	3. PulWALTZ(const PulWALTZ &PWF1) - Constructs an identical PulWALTZ to the inputPWF1.

	Return Value:
	Examples:
	See Also: =
	5.3.2 =

	Usage:
	Description:
	Return Value:
	Example:
	See Also: PulWALTZ

	5.4 Pulse Waveform Functions
	5.4.1 WF
	5.4.2 WF_WALTZR
	5.4.3 WF_WALTZK
	5.4.4 WF_WALTZQ
	Usage:
	Description:
	Return Value:
	Example:
	See Also: WALTZ-4, WALTZ-8, WALTZ-16

	5.5 Composite Pulse Functions
	5.5.1 PCmp
	5.5.2 PCmpWALTZR
	5.5.3 PCmpWALTZK
	5.5.4 PCmpWALTZQ
	Usage:
	Description:
	Return Value:
	Example:
	See Also: CycWALTZ-4, CycWALTZ-8, CycWALTZ-16

	5.6 Pulse Cycle Functions
	5.6.1 CycWALTZ4
	5.6.2 CycWALTZ8
	5.6.3 CycWALTZ16
	Usage:
	Description:
	Return Value:
	Example:
	See Also: PCmpWALTZ-K, PCmpWALTZ-R, PCmpWALTZ-Q

	5.7 Input Functions
	5.7.1 read
	Usage:
	Description:
	Return Value:
	Example:
	See Also: ask_read
	5.7.2 ask_read

	Usage:
	Description:
	Return Value:
	Example:
	See Also: ask_read

	5.8 Output Functions
	5.8.1 print
	Usage:
	Description:
	Return Value:
	Example:
	See Also: <<
	5.8.2 <<

	Usage:
	Description:
	Return Value:
	Example:
	See Also: print

	5.9 Description
	5.9.1 Introduction
	5.9.2 WALTZ Parameters
	5.9.3 WALTZ Waveforms & Composite Pulses
	WALTZ-R 3 Step Sequence: Composite 180 Pulse
	1
	90.0
	0.0
	2
	180.0
	180.0
	3
	270.0
	0.0
	Figure 7-1 The basic WALTZ 3-step waveform. The blue steps indicate pulses that are applied witho...

	WALTZ-K 5 Step Sequence
	1
	180.0
	180.0
	2
	360.0
	0.0
	3
	180.0
	180.0
	4
	270.0
	0.0
	5
	90.0
	180.0
	Figure 7-1 The basic WALTZ-K 5-step waveform. The blue steps indicate pulses that are applied wit...

	WALTZ-Q 9 Step Sequence
	1
	270.0
	180.0
	2
	360.0
	0.0
	3
	180.0
	180.0
	4
	270.0
	0.0
	5
	90.0
	180.0
	6
	180.0
	0.0
	7
	360.0
	180.0
	8
	180.0
	0.0
	9
	270.0
	180.0
	Figure 7-1 The basic WALTZ-Q 9-step waveform. The blue steps indicate pulses that are applied wit...
	5.9.4 WALTZ Pulse Cycles

	WALTZ-4 Pulse Cycle
	1
	90.0
	0.0
	1
	R
	2
	180.0
	180.0
	2
	3
	270.0
	0.0
	3
	4
	90.0
	0.0
	1
	R
	5
	180.0
	180.0
	2
	6
	270.0
	0.0
	3
	7
	90.0
	180.0
	1
	R
	8
	180.0
	0.0
	2
	9
	270.0
	180.0
	3
	10
	90.0
	180.0
	1
	R
	11
	180.0
	0.0
	2
	12
	270.0
	180.0
	3
	Figure 7-2 The WALTZ-4 pulse cycle. Four WALTZ-R composite pulses are linked together with the la...

	WALTZ-8 Pulse Cycle
	Figure 7-1 The basic 5-step WALTZ-K waveform (on the left) is repeated 4 times to produces the WA...

	WALTZ-16 Pulse Cycle
	Figure 7-1 The basic 9-step WALTZ-Q waveform (on the left) is repeated 4 times to produces the WA...
	5.9.5 WALTZ Parameters
	Table 1: Spin System Parameters

	WALTZgamB1
	Hz
	WALTZiso
	none
	WALTZphi
	degrees
	Channel: WALTZiso
	Channel: WALTZphi
	Pulse Strength: WALTZgamB1

	5.10 WALTZ Examples
	5.10.1 Reading WALTZ Parameters
	Reading WALTZ Parameters
	Figure 7-2 Typical WALTZ parameters (left) and the GAMMA code which reads them. The parameters ar...
	5.10.2 WALTZ Decoupling
	a.out WALTZdec.sys 1H 500 1024 .5

	13C Decoupled Spectrum Using WALTZ-16
	Figure 7-3 The spectrum produced using the program WALTZdec0.cc with input parameter file WALTZde...

	13C Coupled Spectrum, Zero Strength WALTZ-16
	Figure 7-4 Same as previous figure but with zero decoupler field.
	5.10.3 WALTZ-16 Decoupling vs. Field

	13C WALTZ-16 Decoupling Versus RF-Field Strength
	Figure 7-5 Proton spectra produced using the program WALTZdec1.cc with input parameter file WALTZ...
	a.out WALTZdec.sys WALTZdecBs 1H 500 1024 1.5
	5.10.4 WALTZ Types vs. Decoupling

	13C WALTZ Decoupling Versus WALTZ Type
	Figure 7-6 Proton spectra produced using the program WALTZtypes1.cc with input parameter file WAL...
	5.10.5 WALTZ Decoupling with Relaxation

	13C WALTZ Decoupling Under Relaxation
	Figure 7-7 Proton spectra produced using the program WALTZdec2.cc with input parameter file WALTZ...
	5.10.6 WALTZ Decoupling Profile

	WALTZ Decoupling Profiles
	Figure 7-8 WALTZ decoupling profiles produced from the program WALTZprof2.cc. Decoupling was perf...

